Penalized function-on-function regression
نویسندگان
چکیده
منابع مشابه
Penalized Function-on-Function Regression
A general framework for smooth regression of a functional response on one or multiple functional predictors is proposed. Using the mixed model representation of penalized regression expands the scope of function-on-function regression to many realistic scenarios. In particular, the approach can accommodate a densely or sparsely sampled functional response as well as multiple functional predicto...
متن کاملIdentifiability in penalized function-on-function regression models
Regression models with functional responses and covariates constitute a powerful and increasingly important model class. However, regression with functional data poses well known and challenging problems of non-identifiability. This non-identifiability can manifest itself in arbitrarily large errors for coefficient surface estimates despite accurate predictions of the responses, thus invalidati...
متن کاملcompactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولFast function-on-scalar regression with penalized basis expansions.
Regression models for functional responses and scalar predictors are often fitted by means of basis functions, with quadratic roughness penalties applied to avoid overfitting. The fitting approach described by Ramsay and Silverman in the 1990 s amounts to a penalized ordinary least squares (P-OLS) estimator of the coefficient functions. We recast this estimator as a generalized ridge regression...
متن کاملFast Function to Function Regression
We analyze the problem of regression when both input covariates and output responses are functions from a nonparametric function class. Function to function regression (FFR) covers a large range of interesting applications including timeseries prediction problems, and also more general tasks like studying a mapping between two separate types of distributions. However, previous nonparametric est...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics
سال: 2014
ISSN: 0943-4062,1613-9658
DOI: 10.1007/s00180-014-0548-4